Modeling of Standing Column Wells in Ground Source Heat Pump Systems

Zheng D. O’Neill Ph.D., P.E.
Cimetrics, Inc. Boston, Mass

Jeffrey D. Spitler Ph.D., P.E.
Oklahoma State University, Stillwater, OK

Simon J. Rees Ph.D. CEng
De Montfort University, Leicester, United Kingdom
Outline

- Introduction
- Model development
- Experimental validation
- Application example
- Conclusions and recommendations
SCW Systems

- **Standing Column Well:**
 - Single borehole
 - Open loop
 - Water extracted from and returned to same borehole
 - Similar to a domestic water well, but water is returned, for the most part.
 - In some systems, some water, some of the time, is not returned. ("Bleed")
Introduction

SCW systems

- Operation
 - Without bleed
 - With bleed

- Benefits
 - Economy, environmental benefits...
 - 50-60 feet per ton

- Limitation
 - Good groundwater quality
 - Local regulations
Previous work

- No models available for SCW design and energy analysis purposes:
 - Effects of bleed not quantified.
 - Time varying thermal boundary conditions
 - Effects of design parameters such as borehole diameter, borehole depth, dip tube size, etc. not quantified.
Model: Detailed model

- Detailed model (ASHRAE-RP1119)
 - Two-dimensional (radial/axial) finite volume method-composed of two coupled components
- Well borehole model
 - Heat transfer in the borehole
- Finite volume model
 - Heat transfer in the surrounding rock
 - Flow in the borehole and in the surrounding rock
Model: Detailed model

- Adiabatic surface
- Top of Water Table
- Return Pipe
- Discharge
- Borehole wall boundary condition is heat flux from sub-borehole model
- Suction Pipe Inlet

Head/temperature distribution after one year of normal operation

\[T = (11.1 + 0.006 \times \text{depth}) \, ^\circ C \]

Head is set as constant zero

\[T = 13.38 \, ^\circ C \]

Head is set as constant zero

(head flux is specified)
Model: Detailed model

- Significant Parameters
 - Bleed Rate; Borehole depth
 - Rock thermal conductivity and hydraulic conductivity
- Performance can be improved dramatically by introducing bleed
- As bleed rate increases, sensitivity to length decreases
- As hydraulic conductivity increases, there can be a tradeoff between convective and advective heat transfer
- Model takes several weeks (!) to simulate a single year of operation
Model: Simplified model

- **Simplified model**
 - One-dimensional finite difference method
 - For annual building simulation
 - More than a hundred thousand times faster than detailed model. 😊
- **Assumptions**
 - No vertical heat and water flow
 - Zero natural ground temperature gradient
Model: Simplified model

\[T_{gw} \cdot b \cdot \dot{m} \]

\[T_{fi} \cdot (1-b) \cdot \dot{m} \]

\[T_{fo} \cdot \dot{m} \]

\[\dot{m} b C_p T_{gw} \]

\[\dot{m} (1-b) C_p T_{fi} \]

\[\dot{m} C_p T_{fo} \]

Bleed flow at \(T_{fi} \)

Groundwater flow at \(T_{gw} \)

Wall

Far Field

Borehole

\(T_{far} = 12^\circ C \)
Model: Simplified model

- Three different effects of water on the heat transfer in SCW system
 - Static water
 - Effective thermal conductivity
 - Induced groundwater flow (w/o bleed)
 - Enhanced thermal conductivity
 - Bleed
 - Bleed-driven advection
Model: Simplified model

- Use enhanced thermal conductivity
- The effect of bleed is superimposed
- Three procedures to estimate the enhanced thermal conductivity
 - Physical *in-situ* test
 - Numerical *in-situ* experiment
 - Correlations
Comparisons of temperatures at the outlet to the well for the simplified model (SCW1D), reference model, and Mikler’s data in cooling and heating mode.

- Penn. State University
- One SCW without bleed
- 320 m (1050 ft) deep
- 0.1524 m (6 in) diameter

Experimental validation—without bleed
Experimental validation—Haverhill public library, Massachusetts

- Initially two SCWs, Now four SCWs
- 457 m (1500 ft) deep
- 0.1524 m (6 in) diameter
Comparisons of calculated and measured temperatures at the outlet of the well using the Haverhill Public Library installation data.
Application example

- Annual energy simulation implemented in HVACSIM+

- Three different system
 - Single U-tube closed-loop
 - Short-time step g-function
 - SCW without bleed
 - Simplified SCW 1D model
 - SCW with bleed – deadband control
 - Simplified SCW 1D model
Application example

Summary of ground heat exchanger design results for Boston weather file

<table>
<thead>
<tr>
<th>Ground Heat Exchanger Type</th>
<th>Borehole Geometry</th>
<th>Borehole Depth (m) [ft]</th>
<th>Required Total Borehole Length (m) [ft]</th>
<th>EFT_{max} (°C) [°F]</th>
<th>EFT_{min} (°C) [°F]</th>
<th>Feet per ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single U-tube closed-loop</td>
<td>1×8</td>
<td>82 (268)</td>
<td>653 (2,144)</td>
<td>29.7 (85.5)</td>
<td>3.4 (38.2)</td>
<td>121</td>
</tr>
<tr>
<td>Standing Column Well Without Bleed</td>
<td>1×1</td>
<td>391 (1,283)</td>
<td>391 (1,283)</td>
<td>22.8 (73.1)</td>
<td>7.0 (44.6)</td>
<td>72</td>
</tr>
<tr>
<td>Standing Column Well With 10% Bleed (Deadband Control)</td>
<td>1×1</td>
<td>263 (863)</td>
<td>263 (863)</td>
<td>28.1 (82.5)</td>
<td>7.0 (44.6)</td>
<td>48</td>
</tr>
</tbody>
</table>
Application example

- Required total borehole depth for different ground heat exchanger systems in Boston, MA
 - SCW without bleed requires 40% less borehole depth
 - SCW with bleed requires 60% less borehole depth
Application example

Life Cycle Cost - 20-year Operation
(Present Value)

- Single U-tube
- SCW w/o bleed
- SCW w/ bleed

Cost ($)
Conclusions

- Developed numerical models of standing column wells
 - Two-dimensional finite volume model
 - One-dimensional finite difference model
- Validated against experimental data
 - With Bleed
 - Without bleed
- 1-d model is suitable for either energy analysis or design purposes.
Recommendations–Future Research

- Extend the model to account for well-to-well interference in multiple standing column well systems.
- Develop and validate complete design procedure, including recommended site tests:
 - *In situ* measurement of the thermal conductivity
 - Well drawdown test for the hydraulic conductivity
- Further long-term experimental validation
Any Questions?

www.hvac.okstate.edu