A GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES

A.J. van Gelder, H.J.L. Witte & P. Heaton
GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES
SENEDD: THE GREEN BUILDING

• Designed by Lord Richard Rogers
• Design life span: 100 years
• Mainly natural materials
• Total cost: £ 65 10^6

• Ground loop heat exchanger: 27 BHE of 100 meters
 - Heating load ± 75 MWh, cooling load ± 80 MWh
 - Peak load ± 80 – 130 kW

• Geo-energy plant with 3 heatpumps (6 stages)
 - simultaneous heating and cooling
 - Free cooling option
 - Additional IT-suite cooling
 - Component optimisation
 - Control system optimisation
GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES

SENEDD - CARDIFF - WALES
PREPARATION: TEST DRILLING & GRT

- 2 Test boreholes, 100 and 60 meters
- Each BHE two tests: extraction & injection

Significantly higher λ during injection

<table>
<thead>
<tr>
<th>source</th>
<th>energy flux (Watts)</th>
<th>λ (w/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>geologic log & ref tables</td>
<td></td>
<td>2.26</td>
</tr>
<tr>
<td>60-meters, injection</td>
<td>54.95</td>
<td>2.53 ± 0.042</td>
</tr>
<tr>
<td>60-meters, extraction</td>
<td>-27.47</td>
<td>2.21 ± 0.015</td>
</tr>
<tr>
<td>100-meters, injection</td>
<td>19.06</td>
<td>2.78 ± 0.028</td>
</tr>
<tr>
<td>100-meters, extraction</td>
<td>-15.24</td>
<td>2.57 ± 0.046</td>
</tr>
</tbody>
</table>
INSTALLING BHE SYSTEM

GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES
INSTALLING BHE SYSTEM

GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES
INSTALLING BHE SYSTEM
INSTALLING BHE SYSTEM
Installing BHE System
GEO ENERGY PLANT DESIGN

• Simultaneous heating and cooling
• Operational efficiency
 - Optimization of plant design using dynamical simulation (TRNSYS)
 - Matching compressor sizes to building load
 - Low velocity pipework and valves with low K_v
 - Quality of materials and workmanship
 - Control concepts
• Small plant footprint and limited height
• Suitable for off-site construction and on-site assembly
• **Heating and cooling load distribution**
 - Smallest step 15 – 25 kW, total capacity requested > 125 kW
 - 3 heatpumps, 2 compressors each installed
 - 30-35 kW compressor capacity, 180-210 kW total capacity)
 - Some overcapacity, adds redundancy
• Design concept P&I D schematic
• Plant design & optimisation using TRNSYS
GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES

- **TRNSYS simulation design detail**
 - Optimize inertia tank for cost/size and heat pump cycles
GEO ENERGY PLANT DESIGN

- 3D plant construction/ engineering
- Design and detail engineering in parallel with construction
GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES
GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES
GROUND SOURCE ENERGY PLANT FOR THE NEW ASSEMBLY FOR WALES
CONTROL STRATEGY

• System recognizes three modes
 - Free cooling
 - Mechanical cooling
 - Mechanical heating

• Setpoints for e.g. primary pumps change depending on mode and capacity requirement
 - Allowing lower relative flow at higher capacity means smaller pumps that run more efficiently at low capacity
 - 2-Phase in stead of 3-Phase pumps could be used

• Control philosophy easy to extend to hybrid systems
CONTROL STRATEGY

- System should run independently from BMS
- System should run efficiently at average (low) load, and able to provide peak load
- Hierarchical level of controls:

 - **Tier 1 - Component level**:
 - Standard component controls
 - PID-controls, motors, valves etc.

 - **Tier 2 - Operational level**:
 - State matrix for Modes
 - Valve positions, setpoints for components during different modes

 - **Tier 3 - System level**:
 - Increasing complexity
 - Increasing number

 - **Intelligence**
 - Decision what mode system should run in
The National Assembly building has been awarded a BREEAM ‘Excellent’ Rating – boasting the highest score ever achieved by a BREEAM assessed development in Wales. This puts the new assembly building in the highest category of sustainable design in the UK.