Solar District Heating with Seasonal Storage in Attenkirchen

Manfred Reuss
W. Beuth, M. Schmidt, W. Schoelkopf

Bavarian Center for Applied Energy Research
Division: Techniques for Energy-Systems and Renewable Energies
Walther-Meissner-Str. 6, D-85748 Garching, Germany
www.zae-bayern.de reuss@muc.zae-bayern.de
Solar District Heating Attenkirchen

Reduction of CO₂ – emission by:
- energy conservation
- use of renewable energies

Solar district heating is one option to achieve significant reduction of CO₂ – emission at tolerable extra cost

Objectives:
- saving of primary energy by improved insulation
- use of solar energy
- use of heat pumps
- little extra costs for users

Total heat demand: 487 MWh/a
- 20 single family houses (260 m²)
- 5 semi-detached houses (175 m²)
Solar District Heating Attenkirchen
System layout
Combined Pit / Borehole Storage

The heat storage consists of a pit store made of concrete located in the center of a ring of ducts. The total storage surface is covered with an insulation layer and a ground layer.

- top insulation layer
- grass
- well for piping
- water pit
- concrete wall without insulation and liner
- duct storage ring

typical size of pit: $10^2 - 10^3 \text{ m}^3$;
size of duct: $10^3 - 10^5 \text{ m}^3$
Combined Pit / BTE-Storage
Borehole Thermal Energy Storage

CROSS SECTION

- **Surface**
- **1.50m b. surf.**
- **300mm humus**
- **1000mm gravel**
- **200 mm thermal insulation**
- **100mm sand (0-5mm)**
- **Pipe in sand**
- **Heat exchanger tube (single U-pipe)**
- **Backfill (bentonite-cement-sand-water-grouting)**
- **Borehole 150 mm diameter (e.g. 30 m deep)**

Image: A photograph of a borehole thermal energy storage system with pipes and cables arranged on a field.
Combined Pit / BTE-Storage

Advantages of the hybrid storage:
• thermal coupling of both storage types
• pit store allows easy adjustment of power fluctuations of the solar system
• pit store serves as short term storage
• horizontal temperature gradient
Solar Collectors

- Solar Roof Collector
- 836 m² gross area
- 764 m³ aperture
- Selective surface (Tinox)
Parameters of Components

Solar system
- Solar Roof: 836 m² gross area

Hybrid storage
- volume of the central water pit: 500 m³
 - 8.50 m deep, 9.00 m diameter, cylindrical concrete vessel
 - no liner for tightening
 - no insulation to the bottom and to the sides
- ring shaped BTES 9850 m³
 - 90 boreholes, 30.00 m deep
 - borehole diameter: 150 mm, borehole distance: 2.00 m
 - double-U-BHE (PB-pipe 25x2.3)
 - backfill: bentonit/cement/quartz sand/water-suspension, ThermoCem

Heat pumps
- 2 heat pumps (BTES – water pit)
- 2 heat pumps to the district heating

Heating system in the buildings
- Low temperature floor heating
Cost Evaluation

<table>
<thead>
<tr>
<th>awarding of contract</th>
<th>positions</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>district heating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pipe work</td>
<td>134,100,00 €</td>
<td></td>
</tr>
<tr>
<td>underground work</td>
<td>26,500,00 €</td>
<td>160,600,00 €</td>
</tr>
<tr>
<td>solarthermal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>collectors</td>
<td>189,600,00 €</td>
<td>231,100,00 €</td>
</tr>
<tr>
<td>system costs: pumps, valves, etc.</td>
<td>41,500,00 €</td>
<td></td>
</tr>
<tr>
<td>heating central (building)</td>
<td>25,800,00 €</td>
<td></td>
</tr>
<tr>
<td>equipment of heating central</td>
<td>232,300,00 €</td>
<td></td>
</tr>
<tr>
<td>heat pumps (BTES)</td>
<td>25,300,00 €</td>
<td></td>
</tr>
<tr>
<td>heat pumps (HWS)</td>
<td>25,800,00 €</td>
<td></td>
</tr>
<tr>
<td>pipes, pumps, fittings, insulation</td>
<td>181,200,00 €</td>
<td></td>
</tr>
<tr>
<td>hot water storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>underground work</td>
<td>82,700,00 €</td>
<td>203,200,00 €</td>
</tr>
<tr>
<td>concrete work</td>
<td>98,800,00 €</td>
<td></td>
</tr>
<tr>
<td>hydraulic connections</td>
<td>10,000,00 €</td>
<td></td>
</tr>
<tr>
<td>pro rata planning</td>
<td>11,700,00 €</td>
<td></td>
</tr>
<tr>
<td>borehole heat exchangers</td>
<td>124,100,00 €</td>
<td></td>
</tr>
<tr>
<td>drilling</td>
<td>49,700,00 €</td>
<td></td>
</tr>
<tr>
<td>piping materials</td>
<td>41,900,00 €</td>
<td></td>
</tr>
<tr>
<td>connection of pipes</td>
<td>25,400,00 €</td>
<td></td>
</tr>
<tr>
<td>pro rata planning</td>
<td>7,100,00 €</td>
<td></td>
</tr>
<tr>
<td>control / electric connections</td>
<td>119,300,00 €</td>
<td></td>
</tr>
<tr>
<td>grid connection</td>
<td>10,800,00 €</td>
<td></td>
</tr>
<tr>
<td>planning and site management</td>
<td>41,700,00 €</td>
<td></td>
</tr>
<tr>
<td>connection for 6 houses</td>
<td>32,500,00 €</td>
<td></td>
</tr>
<tr>
<td>sum</td>
<td></td>
<td>1,181,400,00 €</td>
</tr>
</tbody>
</table>

Specific costs:

- **collector**: 231,100 €
 - gross area aperture
 - 836 m²
 - 764 m²
 - 276 €/m²
 - 302 €/m²

- **water pit**: 203,200 €
 - volume
 - 500 m³-H₂O
 - 406 €/m³-H₂O

- **BHE’s**: 124,100 €
 - total length
 - 2700 m
 - 46 €/m
 - ground volume
 - 10,500 m³
 - 12 €/m³
 - water equivalent
 - 6800 m³-H₂O
 - 18 €/m³-H₂O

- **total storage**: 327,300 €
 - water equivalent
 - 7300 m³-H₂O
 - 45 €/m³-H₂O
Energy Balance

Apr 2004 – Mar 2005
BTES => HP => pit => load (pit at ~ 50°C)
solar fraction (elec.) 73%

Apr 2005 – Feb 2006
all heat pumps in use
(pit at ~ 50°C in summer, ~10 - 25°C in winter)
solar fraction (elec.) 74%
Operating Experiences

- system concept is technically and economically promising
- the new storage type should be tested in real operational conditions
- interesting operational features – e.g. storage management
 - parallel charging
 - serial charging
- major mistakes in design, construction and control – new control program required
- small temperature drop in the district heating due to high flow rate
- improved performance by demand related variation of flow rate and floating of supply temperature of the district heating – 50 °C for domestic hot water reduction and 35 °C for space heating
- analysis of the construction costs was encouraging and shows still potential for cost reduction
- analysis of system performance shows potential
Conclusion

- Attenkirchen is a rather small solar district heating system
- objective was to demonstrate the feasibility of such small size plants
- the new storage type tested in real operational conditions showed encouraging results
- Long-term grouting materials for borehole heat exchangers
- analysis of the construction costs as very promising for the solar system and the storage
- major mistakes in the control program
- detailed analysis of system performance not yet possible because of control

Intensive coaching of designers and construction companies is required
Acknowledgement

- The construction of the solar district heating system in Attenkirchen was subsidized by the Bavarian Ministry of Economy, Traffic, Infrastructure and Technology.
- The R&D work was funded by the German Federal Ministry for Environment, Nature Conservation and Nuclear Safety (project no. 0329607D)

The authors appreciate this support very much.